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Motivation

Explainable AI (XAI):

provides human-satisfying interpretations of the behavior of “black-box” AI-based models, 

increasing users’ trust on these cumbersome models[1].

Applications:

• Medicine, Autonomous Driving: remarkable demand for reasoning due to the catastrophic 

side effects of single false predictions.

• Criminal Justice: Regulations forcing computer-based models to provide rationale for their 

decisions.

• Novelty detection: detecting abnormally-shaped patterns in real-world industrial data-sets.

[1] Lipton, Z. C. 2018. The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability is Both Important and Slippery. Queue 

16(3): 31–57. ISSN 1542- 7730. doi:10.1145/3236386.3241340.

Why did the model predict this?

When the model fails to predict correctly?

What features are important for the model?

…
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Problem statement

[1] Lipton, Z. C. 2018. The Mythos of Model Interpretability: In Machine Learning, the Concept of Interpretability is Both Important and Slippery. Queue 

16(3): 31–57. ISSN 1542- 7730. doi:10.1145/3236386.3241340.

Terminology:

Post-hoc: models the behavior of the target model after training has concluded.

Local: Illustrates the relationship between the outcome of the target model with the input

Model-specific : Specialized for a certain type of AI-based models, using assumptions 

regarding their architecture and properties

Aim to address the problem of visual explainability

▪ To visualize the behavior of models trained for image recognition tasks

▪ Using a heatmap representing the evidence leading the model to decide.

Our problem: Visual explainable AI

▪ A branch of post-hoc and local XAI algorithms

▪ Specialized on all feed-forward CNNs (model-specific)



Visual explanation algorithms:

• Backpropagation-based methods: Running by calculating 

the gradient of a model’s output to the input features or 

the hidden neurons (e.g., Vanilla Gradient, Integrated 

Gradient, Full Gradient).

• CAM-based methods: Visualizing the features extracted in 

a single layer of the CNNs (e.g., Grad-CAM, Grad-CAM++, 

Score-CAM).

• Perturbation-based methods: Probing the model’s behavior 

using perturbed copies of the input image (e.g., RISE, 

Extremal Perturbation).

Underestimation of global sensitivity 

Low-resolution, noisy explanation map

Slow run-time of perturbation approaches
5

Limitations of Previous Works
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Goal of the proposal method

Goal:

▪ Explanation completeness and faithfulness: Correlation of the explanation maps with the 

model's behavior.

▪ Visual quality: The clarity of the generated explanations for the end-users 

(avoiding noise and blurring, high spatial resolution, and object localization ability). 

▪ + Acceptable Run-time 

▪ We propose a novel attribution method which runs by visualizing the features detected in 

multiple layers of a CNN, and fusing this information in a unique explanation map.

▪ We discuss a simple strategy to select the minimum number of layers in each network to 

visualize in order to provide a concrete explanation for the whole CNN.

▪ By conducting thorough experiments on various models, we show that our proposed 

method offers more complete explanation maps and visualizes the features extracted by 

the target CNN more clearly, in comparison with the state-of-the-art attribution methods.

Our proposed method is perturbation-based. 

However, it has common characteristics with the two 

other groups of the methods as well.



Semantic Input Sampling for 
Explanation (SISE)
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Our Approach
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Our proposed method (SISE):

▪ Inspired by Randomized Input Sampling[2] (RISE) 

▪ Model-specific solution for CNNs to overcome the limitations of RISE

▪ Idea: Use feed-forwarding masked copies of a test image (called attribution masks) to the target 

model instead of random masks

Novelty 

▪ The first to discuss and propose a logical layer selection strategy to get the most spatial and 

semantic information from a CNN by probing the minimum number of layers.

▪ The first to propose a fusion framework that aggregates the visualization maps from multiple 

layers in a factual manner, to improve the resolution of the explanation maps while retaining the 

class distinctiveness of the represented features 

Related works on aggregating visualization maps from multiple layers 

▪ (Rebuffi et al. 2020): Only combined multiple layer maps via simple operations such as addition or 

multiplication.

▪ (Wang et al.2019) : not address lack of class discriminability in the set of masks

[2] Petsiuk, Vitali, Abir Das, and Kate Saenko. "Rise: Randomized input sampling for explanation of black-box models." arXiv preprint arXiv:1806.07421 (2018).



Developing SISE: Main ideas

Major questions:

1. What layers of a given CNN should we select to be visualized in the first 3 phases?

2. How should we perturb the image to visualize each layer?.

Idea. Block-wise Feature Explanation 

Idea. Attribution-Based Perturbation

9



Block-Wise Feature Explanation 
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[3] Veit, A.; Wilber, M. J.; and Belongie, S. 2016. Residual networks behave like ensembles of relatively shallow networks. In Advances in neural information 

processing systems, 550– 558.

Pooling layers:

• Decreasing computational complexity in convolutional neural networks. 

• Reducing dependency of the feature maps on local transmissions.

• Higher-level features can be interpreted as “presence of complex shapes, objects, 

and textures”.

Convolutional blocks:

• In shallow non-residual networks, they can be represented by a plain architecture.

• Residual networks are modelled with an unraveled architecture[3].

Unraveled architecture[3]

The unraveled architecture can be

generalized to all CNNs, either residual or non-residual. 



Block-Wise Feature Explanation 
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[3] Veit, A.; Wilber, M. J.; and Belongie, S. 2016. Residual networks behave like ensembles of relatively shallow networks. In Advances in neural information 

processing systems, 550– 558.

Insight 1: During a forward/backward pass, the information may be processed in a convolutional 

layer or propagated without any changes (e.g., from skip-connection layers). 

Insight 2: However, regarding pooling operation, since the dimension of the layer’s output is 

reduced, the implication above is not applied.



Block-Wise Feature Explanation 
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[3] Veit, A.; Wilber, M. J.; and Belongie, S. 2016. Residual networks behave like ensembles of relatively shallow networks. In Advances in neural information 

processing systems, 550– 558.

Implication 1: All signals represented in each convolutional block can be traced from the input of 

their corresponding pooling (downsampling layer).

Implication 2: By visualizing the last convolutional layers in each convolutional block, representing 

the features captured by the CNN is achievable.



How Perturbation-based Methods Work
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[2] Petsiuk, Vitali, Abir Das, and Kate Saenko. "Rise: Randomized input sampling for explanation of black-box models." arXiv preprint arXiv:1806.07421 (2018).

Randomized Input Sampling for Explanation[2] (RISE):

Pros:

• Applicability of the method to the AI models beyond the family of CNNs.

• Shows the superior preciseness of perturbation rather than backpropagation, in forming 

explanation map.

Cons:

• Low visual quality of RISE explanation maps.

• Increase of failure chance, while dealing with small object instances

• Slow runtime, as it passes numerous (4000-8000) masked images through a model. 

Image credit: [2]



Attribution-based Perturbation
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[2] Petsiuk, Vitali, Abir Das, and Kate Saenko. "Rise: Randomized input sampling for explanation of black-box models." arXiv preprint arXiv:1806.07421 (2018).

Semantic Input Sampling for Explanation (SISE):

Idea:

• We get attribution masks from the feature maps in the feature extractor part of the CNN.

• Since feature maps might contain class-indiscriminative attributions, we use 

backpropagation to select the most class-discriminative feature maps to be converted 

to attribution masks.

Pros:

• Depicting the attributions captured by the model.

• Ignoring the background and outliers ignored by the model.

• Reducing computational time (lower number of masks required than random masks).

Top: Attribution masks – Bottom: Random masks[2]. 



Our Approach
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Our proposed method (SISE):

▪ Consists four consecutive phases:

▪ The first phases are applied on multiple layers. Corresponding to each layer, the third phase 

outputs a 2-dimensional map called visualization map.

▪ The visualization maps are aggregated in the last phase to form the desires explanation map.

1. Feature map extraction

2. Feature map selection

3. Attribution mask scoring

4. Feature aggregation

[2] Petsiuk, Vitali, Abir Das, and Kate Saenko. "Rise: Randomized input sampling for explanation of black-box models." arXiv preprint arXiv:1806.07421 (2018).

Phase 4:

Fusion block



Methodology
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Phases 1-3:

These scores represent “average gradient” 

values for each feature map.

The feature maps satisfying 
𝛼𝑘
(𝑙)

max
𝑘∈{1,…,𝑁}

𝛼
𝑘
(𝑙) > 𝜇 are selected.

(“𝜇” is a threshold parameter which is set to zero by default.) 

Feature maps: 𝐴𝑖
(𝑙)
∀𝑖 ∈ {1,… ,𝑁}

The set of locations in the feature maps: Λ(𝑙)

Average gradient scores:𝛼𝑖
(𝑙)

= σ
𝜆(𝑙)∈Λ(𝑙)

𝜕Ψ(𝐼)

𝜕𝐴
𝑖
𝑙 (𝜆(𝑙))

Attribution masks: 𝑚 ∈ 𝑀𝑑
(𝑙)

The set of locations in the input domain: Λ

Visualization map of the layer (𝑙) : 𝑉𝐼,Ψ
(𝑙) = 𝔼

𝑀𝑑
(𝑙) [Ψ 𝐼 ⊙𝑚 .𝐶𝑚(𝜆)]

𝐶𝑚 𝜆 =
𝑚(𝜆)

σ𝜆∈Λ𝑚(𝜆)
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Phase 4:

Fusion block



PASCAL VOC 2007[5]:

➢ Purpose: Multi-label image classification, Object Detection

➢ Containing 4963 test images in 20 classes, Bounding boxes provided 

➢ A VGG-16 model and a ResNet-50 model trained on this dataset are utilized[4].

MS COCO 2014[6]:

➢ Purpose: Multi-label image classification, Object Detection

➢ Containing over 40,000 validation images in 80 classes, Segmentation masks 

provided.

➢ A VGG-16 model and a ResNet-50 model trained on this dataset are utilized[4].

PAO Severstal[7]:

➢ Purpose: Anomaly Segmentation (we recast it to an image classification 

dataset)

➢ Containing test images from 4 defective and one normal classes

➢ Only correct labels provided.

➢ A balanced subset of images used (containing 4381 images).

➢ A ResNet-101 model trained on this dataset is utilized.

18

Experiments: Datasets and Models

[4] Fong, R.; Patrick, M.; and Vedaldi, A. 2019. Understanding deep networks via extremal perturbations and smooth masks. In Proceedings of the IEEE 

International Conference on Computer Vision, 2950–2958.

[5] Everingham, M.; Van Gool, L.; Williams, C. K. I.; Winn, J.; and Zisserman, A. 2007. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results .

[6] Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollar, P.; and Zitnick, C. L. 2014. Microsoft ´ coco: Common objects in context. In 

European conference on computer vision, 740–755. Springer.

[7] PAO Severstal. 2019. Severstal: Steel Defect Detection on Kaggle Challenge.
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Qualitative results

Dataset: PASCAL VOC 2007, Model: ResNet-50

Dataset: MS COCO 2014, Model: VGG-16

Advantages
1. Improved spatial resolution of the 

explanation maps

2. Highlighting the mid-level and low-level 

features extracted by the target CNN.

3. More accurate explanations for the 

smaller instances.

4. Ignoring class-indistinctive features in 

the explanations.

5. The ability to provide concrete outputs 

while dealing with multiple instances 

from different classes (see the next 

slide).
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Qualitative results

Dataset: MS COCO 2014, Model: ResNet-50
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Quantitative evaluation: metrics
Ground truth-based metrics

Verifying the meaningfulness of explanation methods, and their ability in feature 

visualization.

➢ Energy-based pointing game[8] (The fraction of energy inside am explanation map 

captured in a bounding box.)

➢ Bounding box[9] (Adaptive mIoU).

➢ mIoU (comparing the top 20% pixels of explanation maps with ground truth.)

[8] Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P.; and Hu, X. 2020. Score-CAM: Score-Weighted Visual Explanations for Convolutional 

Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 24–25.

[9] Schulz, K.; Sixt, L.; Tombari, F.; and Landgraf, T. 2020. Restricting the Flow: Information Bottlenecks for Attribution. In International Conference on 

Learning Representations. URL https://openreview.net/forum?id=S1xWh1rYwB.

[10] Chattopadhay, A.; Sarkar, A.; Howlader, P.; and Balasubramanian, V. N. 2018. Grad-CAM++: Generalized GradientBased Visual Explanations for Deep 

Convolutional Networks. In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), 839–847. doi:10.1109/WACV. 2018.00097.

[11] Ramaswamy, H. G.; et al. 2020. Ablation-CAM: Visual Explanations for Deep Convolutional Network via Gradientfree Localization. In The IEEE Winter 

Conference on Applications of Computer Vision, 983–991

Model truth-based metrics

Justifying the faithfulness and validity of the explanation maps from the perspective 

of the model.

➢ Drop rate[10] (Measuring the average drop in the model’s confidence score (if 

drops), when only the top 15% of the pixels are retained).

➢ Increase rate[10] (Measuring the rate of increase in the model’s confidence 

score, when only the top 15% of the pixels are retained).
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Empirical Results

Dataset: PASCAL VOC 2007

Dataset: MS COCO 2014



23

SISE in Visual Anomaly Inspection

Dataset: PAO Severstal, Model: ResNet-101

Dataset: PAO Severstal, Model: ResNet-101

Challenges
1. Class imbalance

2. Intra-class variance

3. Inter-class similarity

4. Abstract patterns representing 

each class.

5. Lack of segmentation masks 

to evaluate ground truth-

based metrics. 
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Additional experiments & Discussion

Dataset: PASCAL VOC 2007

Complexity evaluation

Dataset: PASCAL VOC 2007, Model; ResNet-50

Ablation study

Discussion
1. SISE requires significantly less number of masked 

images to work, rather than similar methods (e.g., 

RISE, Score-CAM).

2. However, discarding trivial and manipulating masked 

images, is a great contribution provided by SISE.

3. Our proposed method shows more accurate 

performance while dealing with smaller objects.

4. Grad-CAM/Grad-CAM++ are yet the fastest methods, 

since they rely on only a single forward pass and a 

single backward pass.

5. By increasing the threshold parameter 𝜇, SISE runs 

faster, in turn with degrading its explanation ability.

6. The performance degradation in SISE is better to be 

quantified via model-truth based metrics.



SISE

1. Improving resolution of explanation maps by aggregating mid-level, and high-level features 

extracted by a target CNN.

2. Enhancing the explanation maps in terms of class-distinctiveness and completeness, by 

proposing a method to extract attribution masks.

3. Decreasing the computational overhead of the prior perturbation-based methods, besides 

strengthening the properties of SISE explanation maps that are crucial to gain users’ trust in the 

target model.

4. Verifying the effectiveness of SISE by setting up extensive experiments using various model and 

datasets.

25

Takeaways
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